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Aqueous Film Forming Foam (AFFF)

Fire Drill using AFFF

Effective fire suppressant

Polyfluoroalkyl Substances (PFAS) form R — R
within contaminant source area |

Emerging contaminant, especially at
military bases




Polyfluoroalkyl Substances (PFAS)

Complex ionic properties (anionic, cationic and zwitterionic)
Exhibit strong interaction with solid-phase organic material
Sorption likely for cationic and zwitterionic constituents (Deeb et al., 2017)

Association with the soil surface opens the door to using geophysics for
characterization
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Objective

Determine sensitivity of geophysical methods
to PFAS contamination

Explore strengths and limitations of methods
through benchtop experiments

Limited scope feasibility study aimed at
steering future funding
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Modified from Mwakanyamale et al. 2012



Geophysical Method

ceiver unit and
dataacquisition

Modified from Falzone et al. 2018, Al Hagrey 2006, Kuras et al. 2007



Geophysical Method
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Modified from Falzone et al. 2018



Geophysical Method

Surface Tomographic Survey of Earthen Dam

Established methods are non-
unique and interpretable
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Geophysical Method

3D Surface Survey Borehole Survey
: Drainagﬁ ditch HMWO1
| p | 0.10 ¢
| | T 0.08 -
- Syt 0.06 <
004 3
002 ©
TOC (mg/kg)
0 1 2 3 4
15 ———————(x10°)
EZO-
o
a
%8 A25t [
t:>E 30}
~—
B e e
4<:-. — HCB-01 (post)
0.6 2 Towards drainage ditch —» — HMW-01 (pre)

Z(m)

Modified from Falzone et al. 2018 Modlified from Falzone et al. 2018



Emerging Geophysical Methods

Cranial MRI

Nuclear Magnetic Resonance (NMR)

Directly sensitive to water, saturation and porosity

Sensitive to pore scale environments, including
surface area and surface mineralogy

Modified from Pasieka/Science Photo Library

Induced Polarization (IP)

IP Image of a Tree Trunk

Like ERT, but with added sensitivity to surface Heartwood
electrical properties

Can be adapted for borehole, surface, time-lapse Sapwood — P
ima gl I’]g Modified from Falzone et al. 2018



Emerging Geophysical Methods

Day 1 Day 9 Day16 Day23 Day37

Infiltration Test from Walsh et al., 2014 1 -

LSI Corrected

w

Depth (m)

=
w

~

I1 2 31 2 31 2 31 2 31 2 3|0 02 04
log T,* (ms) g
HE T
0 1 2 310_2
Modified from SAVSARP, Tucson Water, AZ Fractional 6 *

Modified from Falzone and Keating 2016

Recent technological development has increased the practicality of using these
methods

New instrumentation includes borehole, surface, and advanced laboratory
instrumentation

Emerging methods better suited for characterizing fate and transport of
contaminants



Induced Polarization

Benchtop IP Measurements

Measures the complex conductivity of
porous media

Capable of differentiating between several
conductive properties of porous media

Sensitive to surface mineralogical changes
and pore size




Induced Polarization
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Induced Polarization

Several studies have outlined the close
link between the IP response and sorption

Hao et al. (2016) demonstrated a close link
between the o” and 22Na tracer injections
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Nuclear Magnetic Resonance

Directly measures the presence of NMR Benchtop Instrument
hydrogen in water within porous media

Sensitive to pore size and surface
mineralogy

Also capable of determining spatial
distribution of water within porous
media (1D imaging)




fo = Larmour frequency

B, = Static magnetic field intensity
¥ = gyromagnetic ratio of hydrogen
tis time

Ayy(t) is measured signal

A;is ith signal component

T,; is i relaxation time

A, is initial signal magnitude

Nuclear Magnetic Resonance
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Nuclear Magnetic Resonance
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Signal (uV)

Nuclear Magnetic Resonance
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Column Experiment

Procedure

Synthetic soils made from clay/sand/peat/hematite analyzed in column experiments
Columns were exposed to AFFF contaminated groundwater

NMR and IP measurements taken for 8 days following contamination

Benchtop IP Benchtop NMR
Soil Packed Columns -




Potential NMR Response from PFASs
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Potential IP Response from PFASs

Augmented Polarization

Diminished Polarization
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Uncontaminated samples exhibited constant o” through out experiment

Contaminated samples exhibited noticeable increase in o” over same period



NMR Data
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Contaminated sample exhibited shift in T, distribution to longer
relaxation times over same time period



Conclusions

Observed response in both NMR and IP data over 8 days following contamination
Similar observations are absent from uncontaminated columns

Response seems to be dependent on soil types (i.e. presence of clay, iron minerals,
organic material)

IP response appears to be due to increased polarization within the double layer

NMR response appears to be due to masking of proton-paramagnetic coupling at the
pore surface
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